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“Brown Violin” 

(Source: https://www.pexels.com/photo/brown-violin-697672/) 
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Educator’s Guide 

Title: Trigonometric Functions in Harmonic Series 

Age range: 16 – 18 years old 

Duration: 3 hours 

Mathematical concepts: Trigonometric Functions 

Artistic concepts: Harmonic series in music, musical notes, frequency of musical notes 

and sound waves. 

General objectives: Understand the notion of trigonometric functions, calculate the 

period of the graph of a trigonometric function and solve trigonometric equations. 

Instructions and Methodologies:  It will be useful to use a graphing calculator (it can 

be the online graphing calculator Desmos) to show the graphs to the students and to 

present the solutions of the trigonometric equations. Furthermore, in order for students 

to get a clearer picture of the modes of vibration, please have them watch “Modes 

on a string” video (cf. “Learn More…”) after the respective explanation. 

Resources: A pen; Computer with an internet connection; Access to the website: 

https://www.desmos.com/ 

Tips for the educator: Begin by showing trigonometric functions’ graphs and explain 

their properties. Solve a trigonometric equation for each of the three functions taught 

so that students can solve them by themselves. 

Learning Outcomes and Competences: 

At the end of this module, the student will be able to: 

o Generate the graph of a trigonometric function; 

o Calculate the period of a trigonometric function; 

o Solve equations of the type sin x = a, cos x = a and tan x = a. 

Debriefing and Evaluation: 

Write 3 aspects you liked about this 

activity: 

 

1. 

2. 

3. 

Write 2 aspects that you have learned 1. 

2. 

Write 1 aspect for improvement 1. 
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Introduction 

Mathematics and Music have always been connected. However, the first evidence 

of this relationship was only found in the sixth century BC that the first evidence of this 

relationship were discovered. Pythagoras compared the sound produced by 

hammers of different lengths, used by blacksmiths, to the sound of the monochord, of 

which it is believed Pythagoras was the inventor.  

 

This comparison allowed Pythagoras to discover and improve the mathematical 

reasons behind the sounds through the study of the sounds produced by the 

monochord. He divided the string into two equal parts, then into three equal parts, 

and so on. He matched the sounds mathematically according to the subdivisions he 

was making and created the Pythagorean scale, in which each note maintained a 

well-defined relationship with the other. 

 

Many people and cultures have created their own scales. One example was the 

Chinese people who has created the pentatonic scale. Western culture, however, 

adopted a 12-tone equal temperament, known as a tempered scale or chromatic 

scale. 
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Harmonic Series 

It is of general knowledge that the natural musical notes are A, B, C, D, E, F and G. 

Nevertheless, these are represented in most countries by the solfège naming 

convention Do–Re–Mi–Fa–Sol–La–Ti (or Si) in accordance to the following 

correspondence: C-Do, D-Re, E-Mi, F-Fa, G-Sol, A-La and B-Ti (or Si). The definition of 

these notes was widely influenced by Mathematics. 

 

In the sixth century BC, Pythagoras realized that when vibrating 

a string it not only vibrated in its full extent, but it also formed a 

series of nodes, which divide into smaller sections, the partials, 

which vibrate at frequencies higher than the fundamental.  

 

To study the relationship between the length of the vibrating 

string and the musical tone produced by it, he used a 

monochord. 

 

Figure 2 shows the nodes and partials of the first four frequencies of a series. For an 

easy understanding, they are shown separately, but on a real string, all overlap, 

generating a complex design, similar to the waveform of the instrument. 

 

 

 

 

 

  

Fig. 2 – Modes of vibration of the first 4 harmonics  

((Source:https://pt.wikipedia.org/wiki/Frequ%C3%AAncia_fundamental#/media/Ficheiro:Overtone.jpg) 

Fig. 1 – Pythagoras Bust 

(Source:https://commons.wiki

media.org/wiki/File:Kapitolinisc

her_Pythagoras_adjusted.jpg) 

https://pt.wikipedia.org/wiki/Frequ%C3%AAncia_fundamental#/media/Ficheiro:Overtone.jpg
https://commons.wikimedia.org/wiki/File:Kapitolinischer_Pythagoras_adjusted.jpg
https://commons.wikimedia.org/wiki/File:Kapitolinischer_Pythagoras_adjusted.jpg
https://commons.wikimedia.org/wiki/File:Kapitolinischer_Pythagoras_adjusted.jpg
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Imagine a string stretched out, stuck at its ends. When we touch one end of this 

string, it vibrates (note the first drawing in Figure 3) and produces a note that is called 

a fundamental note. 

 

 

 

 

Pythagoras decided to divide a string into two parts (Figure 4) by touching it in the 

middle. The sound produced was exactly the same, but with a higher frequency 

(usually expressed as “same note, an octave higher”). It has since been proved that 

whenever the number of divisions (or the harmonic number) is a multiple of an earlier 

number, then the sound will be repeated but with a higher pitch. 

 

 

 

 

He then decided to try out what it would sound like if the string was divided into 3 

parts (Figure 5) and noticed that a new sound, different from the previous one, came 

out. This time, it was not the “same note, an octave higher”, but a completely 

different note, which deserved a different name - the fifth.  

 

 

 

 

This sound, although different, matched well with the previous sound. It created a 

pleasant harmony to the ear, which had to do with the fact that the divisions done 

had the mathematical relations of 1/2 and 2/3. With the division of the string into four 

parts, he obtained the note, now known as “fourth”. These three notes are in 

consonance with the fundamental note. 

Fig. 3 – Modes of vibration of a fundamental note 1(f)  

(Source:https://pt.wikipedia.org/wiki/Frequ%C3%AAncia_fundamental#/media/Ficheiro:Overtone.jpg) 

 

 

Fig. 4 – Modes of vibration of a fundamental note 2(f)  

(Source:https://pt.wikipedia.org/wiki/Frequ%C3%AAncia_fundamental#/media/Ficheiro:Overtone.jpg) 

 

 

Fig. 5 – Modes of vibration of a fundamental note 3(f)  

(Source:https://pt.wikipedia.org/wiki/Frequ%C3%AAncia_fundamental#/media/Ficheiro:Overtone.jpg) 

 

 

https://pt.wikipedia.org/wiki/Frequ%C3%AAncia_fundamental#/media/Ficheiro:Overtone.jpg
https://pt.wikipedia.org/wiki/Frequ%C3%AAncia_fundamental#/media/Ficheiro:Overtone.jpg
https://pt.wikipedia.org/wiki/Frequ%C3%AAncia_fundamental#/media/Ficheiro:Overtone.jpg
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Thus, he continued to subdivide the string, obtaining the harmonics of the 

fundamental note, and, by mathematically combining the sounds, he created scales 

which result in notes that naturally related to each other. Over time, the notes have 

been given the names we know of today, which were mentioned earlier. 

 

In this process, each note coming from an object, suffers the influence of the 

fundamental frequency that excites other harmonics, which results in a series of 

frequencies - the harmonic series. The harmonic series are infinite series, composed of 

sinusoidal waves with all the integer multiple frequencies of the fundamental 

frequency. There is not a single harmonic series, but rather a different series for each 

fundamental frequency. 

 

Let us look at an example of a harmonic series that starts at A2 / Lá1  (110 Hz). The first 

16 harmonics for that series can be observed in the following table: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Harmonic # 
Note 

(English) 
Note 

(Neo-latin) 
Frequency 

(Hz) 
1(F) A2 Lá1 110 

2 A3 Lá2 220 

3 E4 Mi3 330 

4 A5 Lá3 440 

5 C#
5 Do#

4 550 

6 E4 Mi4 660 

7 G4 Sol4 770 

8 A5 Lá4 880 

9 B5 Si4 990 

10 C#
6 Do#

5 1100 

11 D#
6 Ré#

5 1210 

12 E6 Mi5 1320 

13 F#
6 Fá#

5 1430 

14 G6 Sol5 1540 

15 G#
5 Sol#5 1650 

16 A6 Lá5 1760 

Table 1 – First 16 harmonics 
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Sound Waves 

When a musical instrument produces a sound, it vibrates, and a series of sinusoidal 

waves are emitted. In addition to the fundamental frequency that defines the note, 

several harmonic frequencies (wave with a frequency that is a positive integer 

multiple of the frequency of the original wave) are also emitted. This way, the 

existence of several frequencies in the same time interval, produced by the same 

sound source, leads to the formation of complex/irregular waves, resulting from the 

sum of simple sinusoidal harmonics, as shown in Figure 6. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6 – Formation of an irregular sound wave  

(Source: Author, at Desmos) 
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Glossary 

 

Fifth: interval between a musical note and another, which is four degrees away from 

the first, within a scale. 

Fourth: interval between one musical note and another, which is three degrees away 

from the first, within a scale. 

Frequency: physical quantity indicating the number of occurrences of an event in a 

given time span. 

Fundamental Frequency: the lowest and strongest component frequency of the 

harmonic series of a sound. 

Fundamental note: main note of a chord, from which the other chords derive from 

Harmonic Series: set of waves composed by the fundamental frequency and of all 

the integer multiples of this frequency. 

Harmonic: sound of a series that constitutes a note. 

Harmony: simultaneous combination of sounds. 

Monochord: an old musical instrument composed of a resonance box, on which was 

extended a single string fastened by two mobile supports. 

Octave: interval between a musical note and another one with half or twice its 

frequency. 

Pentatonic scale: set of all scales consisting of five notes or tones. 

Pitch: high frequency sound from human hearing, usually above 5 KHz. 

Sinusoidal wave: a mathematical curve that describes a smooth periodic oscillation 

(Musical) Scale: ordered sequence of tones by the vibratory frequency of sounds 

(usually from the lowest frequency sound to the highest frequency sound). 

Tempered Scale: division of the octave into twelve equal semitones. 
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Math behind the Harmonic Series 

When a musical instrument is able to produce sounds, it vibrates and a series of 

sinusoidal waves are emitted. When isolated, these waves obey the following 

mathematical function: 𝐟(𝐱) = 𝐬𝐢𝐧 (𝐟𝐢. 𝟐𝛑𝐱), where 𝐟𝐢 is the frequency of the 

harmonic of order 𝐢. 

Let us look at an example: if the frequency of a harmonic is 1, then the waves 

emitted will look like this: 

 

 

 

 

 

 

                        

 

 

 

 

Let us spend some time with trigonometry and trigonometric functions to better 

understand sinusoidal waves. 

 

1. Trigonometric Functions 

Trigonometric functions as real functions of real variable 

If to any real number 𝐱 matches one and only one real number 𝐲 so that 𝐲 = 𝐬𝐢𝐧 𝐱  

and       𝐲 = 𝐜𝐨𝐬 𝐱, then 𝐲 = 𝐬𝐢𝐧 𝐱, 𝐲 = 𝐜𝐨𝐬 𝐱 and 𝐲 = 𝐭𝐚𝐧 𝐱 (𝐭𝐚𝐧 𝐱 = 
𝐬𝐢𝐧 𝐱

𝐜𝐨𝐬 𝐱
) are now 

considered real functions of real variable. 

 

 

 

Fig. 7 – Sinusoidal wave of the function 𝐟(𝐱) = 𝐬𝐢 𝐧(𝐟𝐢. 𝟐𝛑𝐱) where 𝐟𝐢 = 𝟏. 

(Source: Author, at Desmos.com) 
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Fig. 9 – Graphical function of y=cos x 

(Source: Author, at Desmos.com) 

Domain, codomain, extrema and zeros of trigonometric functions 

In a function 𝐟(𝐱), the x value is any real number and is usually called domain. As for 

the set Y into which all of the output of the function is constrained to fall is called 

codomain. In other words, any value that goes into a function is the domain and the 

value that come out is the codomain. 

When modelling a function 𝐟(𝐱), you will notice that it has a largest and a smallest 

value. These are the extrema and correspond to the maximum and minimum point in 

a function. Additionally, a function may have zeros. These are the intersections in the 

x-axis, that is, the zero of a function is an input value that produces an output of 0. 

 

Consider the graphs of the functions: 𝐲 = 𝐬𝐢𝐧 𝐱, 𝐲 = 𝐜𝐨𝐬 𝐱 and 𝐲 = 𝐭𝐚𝐧 𝐱 in the 

interval [−𝟐𝛑, 𝟐𝛑]. 

 

 

 

 

 

 

 

 

 

 

 

y = sin x 

Fig. 8 – Graphical function of y=sin x 

(Source: Author, at Desmos.com) 

y = cos x 
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Fig. 10 – Graphical function of y=tan x 

(Source: Author, at Desmos.com) 

 

 

 

 

 

 

 

 

 

 

By observing the graphs, it is possible to conclude that: 

 

Function 𝐲 = 𝐬𝐢𝐧 𝐱 𝐲 = 𝐜𝐨𝐬 𝐱 𝐲 = 𝐭𝐚𝐧 𝐱 

Domain ℝ ℝ ℝ\ {
𝛑

𝟐
+ 𝐤𝝅, 𝒌𝝐ℤ} 

Codomain [-1 , 1] [-1 , 1] ℝ 

Maximum 

point 

1 to: 

𝐱 =  
𝛑

𝟐
+ 𝟐𝐤𝛑, 𝐤 𝛜 ℤ 

1 to: 

𝒙 =  𝟐𝒌𝝅, 𝒌 𝝐 ℤ 

 

------ 

Minimum 

point 

-1 to: 

𝐱 =  
𝟑𝛑

𝟐
+ 𝟐𝐤𝛑, 𝐤𝛜ℤ 

-1 to: 

𝒙 =  𝝅 + 𝟐𝒌𝝅, 𝒌𝝐ℤ 

 

------ 

Zeros 𝒙 =  𝒌𝝅, 𝒌𝝐ℤ 𝒙 =  
𝝅

𝟐
+ 𝒌𝝅, 𝒌𝝐ℤ 𝒙 =  𝒌𝝅, 𝒌𝝐ℤ 

 

 

 

 

 

 

 

y = tan x 
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2. Monotony of trigonometric functions 

Looking at the previous graphs in the interval [−𝟐𝛑, 𝟐𝛑], is it possible to conclude 

that: 

• 𝐬𝐢𝐧 (𝐱) is increasing in [
𝟑𝛑

𝟐
, 𝟐𝛑], and decreasing in [

𝛑

𝟐
, 𝛑] and in [𝛑,

𝟑𝛑
𝟐

]; 

• 𝐜𝐨𝐬 (𝐱) is increasing in [𝛑,
𝟑𝛑

𝟐
] and in [

𝟑𝛑

𝟐
, 𝟐𝛑], and decreasing in [𝟎,

𝛑

𝟐
] and in 

[
𝛑

𝟐
, 𝛑]; 

 

Regarding the function 𝐲 = 𝐭𝐚𝐧 𝐱, it is possible to conclude that the function is 

increasing at all intervals in which it is defined. 

 

 

3. Symmetry and parity of trigonometric functions 

Even function 

• A function 𝐟 is even if, and only if 𝐟(−𝐱) = 𝐟(𝐱), ∀𝐱 ∈ 𝐃𝐟. 

• The graph of an even function is symmetric with respect to the y-axis.  

 

 

Odd function 

• A function 𝐟 is odd if, and only if 𝐟(−𝐱) = −𝐟(𝐱), ∀𝐱 ∈ 𝐃𝐟. 

• The graph of an odd function is symmetric with respect to the origin of the 

coordinates. 

 

 

 

 

 

 

 

The function 𝒚 = 𝐜𝐨𝐬 𝒙 is an even function, that is, 𝐜𝐨𝐬(−𝒙) = 𝐜𝐨𝐬 𝒙, ∀𝒙 ∈ ℝ. 

The function 𝐲 = 𝐬𝐢𝐧 𝐱 is an odd function, that is, 𝐬𝐢𝐧(−𝐱) = −𝐬𝐢𝐧 𝐱, ∀𝐱 ∈ ℝ. 

The function 𝐲 = 𝐭𝐚𝐧 𝐱 is an odd function, that is, 𝐭𝐚𝐧(−𝐱) = −𝐭𝐚𝐧 𝐱, ∀𝐱 ∈ ℝ\ {
𝛑

𝟐
+

𝐤𝛑, 𝐤𝛜ℤ}. 
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4. Period of the trigonometric functions 

Observing the graphs of the trigonometric functions of Fig. 8, 9 and 10, it is easy to 

conclude that:  

 

 The period of the function y = sin x is 2π: sin (x + k × 2π) = sin x, ∀xϵℝ (k ∈ ℤ); 

 The period of the function y =  cos x is 2π: cos (x + k × 2π) = cos x, ∀xϵℝ (k ∈

ℤ); 

 The period of the function y =  tan x is π: tan (x + kπ) = tan x, ∀xϵℝ\ {
π

2
+

kπ} (k ∈ ℤ). 

 In general, to 𝐤 ≠ 𝟎: 

Function 𝐲 = 𝐀 + 𝐁𝐬𝐢𝐧(𝐤𝐱 + 𝐂) 𝐲 = 𝐀 + 𝐁𝐜𝐨𝐬(𝐤𝐱 + 𝐂) 𝐲 = 𝐀 + 𝐁𝐭𝐚𝐧(𝐤𝐱 + 𝐂) 

Period 𝟐𝛑

|𝐤|
 

𝟐𝛑

|𝐤|
 

𝛑

|𝐤|
 

 

 

5. Solving equations of the type 𝐬𝐢𝐧 𝐱 =  𝐚  

In general, in order to solve, in ℝ, an equation of the type 𝐬𝐢𝐧 𝐱 = 𝐚 we must consider 

the following information: 

 

 

 

 

 

Example of the resolution of an equation of the type 𝐬𝐢𝐧 𝐱 = 𝐚: 

Solve, in ℝ, the equation 𝐬𝐢𝐧 𝐱 = −
√𝟐

𝟐
. 

 

 

The function 𝐟 is periodic of period 𝐩 if 𝐩 is the smallest positive constant, such that 

𝐟(𝐱 + 𝐩) = 𝐟(𝐱) for all the 𝐱 of the 𝐟 domain. 

 The equation of the type sin x = a has only a solution if a ∈ [−1,1]. 

 In the interval [0,2π] there are two values that have same sine value: α and 

π –  α. 

 sin x = sin α ⟺ x = α + 2kπ ∨ x = π − α + 2kπ, k ∈ ℤ. 
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 1st step:  

Find a solution of the equation 𝐬𝐢𝐧 𝐱 = −
√𝟐

𝟐
. 

We know that 𝐬𝐢𝐧 (
𝛑

𝟒
) =

√𝟐

𝟐
 and that 𝐬𝐢𝐧 (−𝐱) = −𝐬𝐢𝐧 𝐱. Therefore, 𝐬𝐢𝐧 (−

𝛑

𝟒
) =

−
√𝟐

𝟐
. 

A solution of the equation is −
𝛑

𝟒
. 

 

 2nd step:  

Calculate 𝛑 −
𝛑

𝟒
= 𝛑 +

𝛑

𝟒
=

𝟓𝛑

𝟒
. 

 

 3rd step:  

Write the general solution of the equation:  𝐱 = − 
𝛑

𝟒
 + 𝟐𝐤𝛑 ∨ 𝐱 = 

𝟓𝛑

𝟒
 + 𝟐𝐤𝛑, 𝐤 ∈ ℤ. 

By using the online graphic calculator Desmos, we can confirm the two obtained 

values: 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 11  – Graphical representation of the equation 𝐬𝐢𝐧 𝐱 = −
√𝟐

𝟐
, in ℝ. 

(Source: Author, at Desmos) 
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6. Solving equations of type 𝐜𝐨𝐬 𝐱 =  𝐚 

After having assimilated the resolution of an equation of the type 𝐬𝐢𝐧 𝐱 = 𝐚, it is very 

simple to solve an equation of the type 𝐜𝐨𝐬 𝐱 = 𝐚. 

The difference is only in observing that: 𝛂 and −𝛂 have the same cosine, that is, 

𝐜𝐨𝐬(𝛂) = 𝐜𝐨𝐬(−𝛂) = 𝐚. 

Therefore, to solve, in ℝ, an equation of type 𝐜𝐨𝐬 𝐱 = 𝐚 we must consider the 

following information: 

 

 

 

 

 

Example of a resolution of an equation of type 𝐜𝐨𝐬 𝐱 = 𝐚. 

Solve, in ℝ, the equation 𝟏 − 𝟐𝐜𝐨𝐬 𝐱 = 𝟎. 

Resolution: 𝟏 − 𝟐 𝐜𝐨𝐬 𝐱 = 𝟎 ⟺ −𝟐 𝐜𝐨𝐬 𝐱 = −𝟏 ⟺ 𝐜𝐨𝐬 𝐱 = 
𝟏

𝟐
. 

 

 1st step: 

Determine 𝛂, in radians, so that 𝐜𝐨𝐬 𝛂 = 
𝟏

𝟐
. 

We know that 𝐜𝐨𝐬 
𝛑

𝟑
 = 

𝟏

𝟐
, therefore, = 

𝛑

𝟑
. 

 

 2nd step: 

If 𝛂 = 
𝛑

𝟑
 is a solution of the equation, so is −𝛂 = −

𝛑

𝟑
. 

 

 3rd step: 

Write the general solution of the equation: 𝐱 = 
𝛑

𝟑
 + 𝟐𝐤𝛑 ∨ 𝐱 = − 

𝛑

𝟑
 + 𝟐𝐤𝛑, 𝐤 ∈ ℤ. 

 The equation of type cos x = a only has a solution if a ∈ [−1,1]. 

 In the interval [0, 2π] there are two values that have the same sine: α and −α. 

 cos x = cos α ⟺ x = α + 2kπ ∨ x = −α + 2kπ, k ∈ ℤ. 
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By using the online graphic calculator Desmos, we can confirm the two obtained 

values: 

 

 

 

 

 

 

 

 

 

 

 

 

7. Solving equations of type 𝐭𝐚𝐧 𝐱 = 𝐚 

In the interval ]−
𝛑

𝟐
,

𝛑

𝟐
[, the equation 𝐭𝐚𝐧 𝐱 = 𝐚 has one and only solution: let it be 𝛂. 

Since the period of the function 𝐲 = 𝐭𝐚𝐧 𝐱 is 𝛑, we conclude that if 𝛂 is the solution of 

the equation 𝐭𝐚𝐧 𝐱 = 𝐚, then 𝛂 + 𝐤𝛑, 𝐤 ∈ ℤ is also a solution.  

Therefore, to solve, in ℝ an equation of the type 𝐭𝐚𝐧 𝐱 = 𝐚 we must consider the 

following information: 

 

 

 

 

Example of a resolution of an equation of type 𝐭𝐚𝐧 𝐱 = 𝐚 

Solve the equation 𝐭𝐚𝐧 𝐱 = √𝟑, 𝟎 ≤ 𝐱 ≤ 𝟐𝛑 (𝐫𝐚𝐝). 

 

 

 

 The equation tan x = a has solution for any real value of a. 

 tan x = tan α ⟺ x = α + kπ, k ∈ ℤ. 

Fig. 12  – Graphical representation of the equation 𝟏 − 𝟐𝒄𝒐𝒔 𝒙 = 𝟎 

(Source: Author, at Desmos) 
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It is known that 𝐭𝐚𝐧
𝛑

𝟑
= √𝟑. Therefore, 𝐱 =

𝛑

𝟑
+ 𝐤𝛑, 𝐤 ∈ ℤ. 

𝐤 = 𝟎 ⟹ 𝐱 =
𝛑

𝟑
; 

𝐤 = 𝟏 ⟹ 𝐱 =
𝟒𝛑

𝟑
; 

𝐤 = 𝟐 ⟹ 𝐱 =
𝛑

𝟑
+ 𝟐𝛑  (𝐠𝐫𝐞𝐚𝐭𝐞𝐫 𝐭𝐡𝐚𝐧 𝟐𝛑); 

𝐤 = −𝟏 ⟹ 𝐱 =
𝛑

𝟑
− 𝟐𝛑  (𝐥𝐞𝐬𝐬 𝐭𝐡𝐚𝐧 𝟎). 

Therefore, 𝐒 = {
𝛑

𝟑
,

𝟒𝛑

𝟑
}. 

 

 

By using the online graphic calculator Desmos, we can confirm the two obtained 

values: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 13 – Graphical representation of the equation 𝐭𝐚𝐧 𝐱 = √𝟑, 𝟎 ≤ 𝐱 ≤ 𝟐𝛑 (𝐫𝐚𝐝). 

(Source: Author, at Desmos) 
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TASKS 

TASK 1 

Determine the period of each of the following trigonometric functions: 

1.1.  y = sin (2x); 1.2.  y = 5sin (
π

3
x); 

1.3.  y = −2cos (−5x); 1.4.  y = −20cos (πx); 

1.5.  y = −3tan (2x); 1.6.  y = −3tan (−
π

2
x). 

TASK 2 

Solve, in ℝ, the following trigonometric equations: 

2.1. −2sin(x) = √2; 

2.2. 2sin(x) + √3 = 0; 

2.3. −2sin(x) = −4; 

2.4. 2sin(2x) − 1 = 0. 

 

TASK 3  

Solve each of the following equations in the indicated sets. 

Note: Show the solutions in radians. 

3.1. cos(x) = −
√2

2
, in ℝ; 

3.2. 2cos(x) + 1 = 0, in ℝ; 

3.3. cos(x) = −1, in [0, 3π]. 

 

TASK 4 

Solve each of the following equations in the indicated sets. 

Note: Show the solutions in radians. 

4.1. 3tan (
x

2
) = −√3, in ℝ; 

4.2. tan(2x) = 1, in [0, 2π]. 
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LEARN MORE… 

 

The Maths of Music 

https://www.youtube.com/watch?v=rTT1XHJKKug 

 

Modes on a string 

https://www.youtube.com/watch?v=cnH2ltfW48U 

 

The Harmonic Series 

https://www.oberton.org/en/overtone-singing/harmonic-series/ 

 

A path to understanding musical intervals, scales, tuning and timbre 

http://in.music.sc.edu/fs/bain/atmi02/hs/hs.pdf 

 

Trignometric functions 

https://www.khanacademy.org/math/algebra-home/alg-trig-functions 

 

Explore graphs of trigonometric functions with Desmos web application 

https://www.desmos.com/ 

 

 

https://www.youtube.com/watch?v=rTT1XHJKKug
https://www.youtube.com/watch?v=cnH2ltfW48U
https://www.oberton.org/en/overtone-singing/harmonic-series/
http://in.music.sc.edu/fs/bain/atmi02/hs/hs.pdf
https://www.khanacademy.org/math/algebra-home/alg-trig-functions
https://www.desmos.com/

